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ABSTRACT: Multicomponent biological networks are often
understood incompletely, in large part due to the lack of
reliable and robust methodologies for network reverse
engineering and characterization. As a consequence, develop-
ing automated and rigorously validated methodologies for
unraveling the complexity of biomolecular networks in human
cells remains a central challenge to life scientists and engineers.
Today, when it comes to experimental and analytical
requirements, there exists a great deal of diversity in reverse
engineering methods, which renders the independent
validation and comparison of their predictive capabilities
difficult. In this work we introduce an experimental platform customized for the development and verification of reverse
engineering and pathway characterization algorithms in mammalian cells. Specifically, we stably integrate a synthetic gene
network in human kidney cells and use it as a benchmark for validating reverse engineering methodologies. The network, which
is orthogonal to endogenous cellular signaling, contains a small set of regulatory interactions that can be used to quantify the
reconstruction performance. By performing successive perturbations to each modular component of the network and comparing
protein and RNA measurements, we study the conditions under which we can reliably reconstruct the causal relationships of the
integrated synthetic network.
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The reverse engineering question has been pursued
increasingly since the advent of molecular biology, and

the methods have gradually shifted from manual, intuitive
pathway reconstructions to high-throughput computational
techniques. The latter methods usually consist of collecting
experimental data, performing computer-aided data analysis,
and drawing conclusions, which guide further experiments. A
successful implementation of this cycle requires high-quality
data, adequate models and algorithms, and confidence that the
interpretation is correct. There are many possible issues with
the experimental techniques used to generate data and with the
algorithmic tools designed to interpret these data, but most
importantly, uncertainty stems from our inability to independ-
ently verify the conclusions suggested by reverse engineering
tools.1,2

Current reverse engineering (RE) methods differ in every
possible dimension of experimental techniques and computa-
tional analyses.3−5 While each method has demonstrated

successful network reconstructions on its own, there are no
accepted standards to compare their relative strengths and
weaknesses due to major differences in the types of data sets
and analyses used. In fact, the lack of unifying standards and
procedures for validation, along with the high degree of
expertise required for computational algorithms, can be
regarded as one of the major obstacles that prevents the
widespread use of network inference methods. To address this
issue, a community-wide effort, DREAM (Dialogue for Reverse
Engineering Assessments and Methods), has been initiated to
facilitate discussion and refine existing methodologies, resulting
in valuable insights about relationships between algorithm
performance and experimental parameters.6−8

Special Issue: IWBDA 2012

Received: September 21, 2012
Published: March 18, 2013

Research Article

pubs.acs.org/synthbio

© 2013 American Chemical Society 255 dx.doi.org/10.1021/sb300093y | ACS Synth. Biol. 2013, 2, 255−262

pubs.acs.org/synthbio


The assessment and verification of RE algorithms9,10 for
pathway reconstruction is a critical issue. Results in yeast11

highlight the usefulness of synthetic circuits for this purpose,
but the problem remains largely unsolved in human cells, which
are likely the most significant (in terms of the scientific and
broader impacts potential) and complex (in terms of the
theoretical and experimental issues) platform.
In this paper, we describe an experimental and theoretical

procedure to refine and validate biological network inference in
human kidney cells. We construct and stably integrate a
synthetic gene circuit that resembles a natural network
topology, establishing an independent, versatile benchmark
system that can assess the performance of a reverse engineering
algorithm (Figure 1a). The proposed reverse engineering
procedure consists of the following steps. First, a small scale
network is stably integrated in mammalian cells. Then, the
individual nodes of this network are weakly perturbed from
their steady state. The pre- and post-perturbation steady states
are measured and fed into a reverse engineering algorithm to
predict the network structure. The results of the algorithm are
compared against the known network structure and are used to
adjust the parameters of the algorithm and set guidelines for
future experiments. These parameters include the perturbation
magnitudes, the data collection and processing techniques, and
the details of computational processing.
As our baseline reverse engineering method we use an

approach based on Modular Response Analysis (MRA), where
we take experimentally measured steady-state responses
following near-linear perturbation of each modular component
of the benchmark system.12−14 The criteria for the selection of
MRA as “iteration zero” RE method is based on our
experience12,13,15 with the method and published experimental
work that successfully used the method,16,17 because it reveals
network structure with a relatively simple experiment setup,

and importantly on the basis of our conviction that the method
is indeed best suited for transitioning from benchmark circuits
to endogenous pathways.
We believe that the use of synthetic circuits as benchmarks

for reverse engineering has important advantages. First, the
synthetic circuits can be engineered to be compatible with
commonly available perturbation (e.g., siRNA or small
molecule) and data acquisition (e.g., qRT-PCR or fluorescent
microscopy) methods. Furthermore, the versatility and diversity
of building blocks for synthetic circuits allows for engineering a
wide range of topologies and functions, while being orthogonal
to endogenous signaling networks. Once the network is stably
integrated in cells and its topology is experimentally confirmed,
it can serve as a basis for validating specific aspects of reverse
engineering.

■ RESULTS AND DISCUSSION
Benchmark Synthetic Network. We engineered a

synthetic regulatory network that consists of two fluorescent
reporters (AmCyan and DsRed) subject to control by two
distinct regulatory elements (Figure 1b). Each of the regulatory
elements can be controlled by chemical ligands (at a
concentration nontoxic to the cell), and their transcriptional
products do not interact with endogenous cellular signaling.
This simple circuit allows the study of scenarios where the
output fluorescent proteins are subject to a range of
heterogeneous inputs: no activation, single source of activation,
and combination of activation and repression.
The first of the two regulatory units, rtTA, is based on the

tetracycline-inducible expression system (Tet-On)18 and is
responsible for initiating transcription of both fluorescent
reporters, AmCyan and DsRed, by binding to a bidirectional
promoter. The activation of the TRE enhancer by rtTA can be
controlled by varying the amount of doxycycline. The second

Figure 1. A platform for assessment of reverse engineering using a synthetic circuit. (a) A workflow diagram of the proposed platform. The
benchmark architecture is stably integrated in a human cell line. A reverse engineering algorithm undergoes validation using perturbations and by
verifying the results using the benchmark. (b) The synthetic circuit delivered to human embryonic kidney cells using FLP recombinase-mediated
stable integration (Flp-In). In the presence of doxycycline, a constitutively transcribed reverse tetracycline-induced transactivator (rtTA) induces
transcription of both fluorescent proteins by binding to the tetO enhancer region of the bidirectional promoter. A short-hairpin RNA, which is also
constitutively transcribed, actively represses translation of DsRed by binding to the target sequence present in 3′ UTR of the DsRed mRNA
transcript. Addition of a morpholino oligo reduces the shRNA activity by protecting the 3′ UTR target site of the shRNA. (c) A diagram depicting
the benchmark synthetic gene circuit. The circuit consists of two distinct regulatory elements with different mechanisms to control the expression
levels of AmCyan and DsRed fluorescent proteins.

ACS Synthetic Biology Research Article

dx.doi.org/10.1021/sb300093y | ACS Synth. Biol. 2013, 2, 255−262256



source of regulation is RNA interference in the form of short-
hairpin RNA (shRNA). The shRNA was constructed by
inserting the FF3 stem-loop in pSiren (Clontech). A gene can
be made susceptible to down-regulation by an arbitrary miRNA
by incorporating targets into its 3′-untranslated region
(UTR).19,20 By inserting three repeats of FF3 target sequence
in the 3′ UTR of the DsRed transcript, we down-regulate the
expression of the fluorescent protein. The activity of shRNA,
which is constitutively transcribed from a U6 promoter, can be
modulated by introducing morpholino oligos (GeneTools).
The antisense morpholino protects the transcript from
degradation by irreversibly binding to the 3′ UTR target
sequence of DsRed.21,22

The expected behavior of the network is best illustrated as a
four-node system with three edges. A pair of activation edges
from DOX-rtTA node to each fluorescent output node are used
in order to indicate doxycycline dependence of the bidirectional
promoter, and a third inhibition edge connects the shRNA
node to DsRed (Figure 1c). We note here that the input
variable morpholino represses the inhibitory effects of shRNA,
resulting to an overall positive action on the output, but in
reporting the reconstruction results we examine the negative
connection between the shRNA and the dsRed protein.
Characterization of the Synthetic Circuit. The individ-

ual parts of the synthetic circuit (Figure 1b) were first cloned
into a single vector (Supporting Information, Cloning), and the

cassette was then integrated stably in a FLP-In HEK 293 cell
line (Invitrogen). We first examined the behavior of the
network in response to titrations of the chemical ligands
doxycycline and morpholino (Figure 2). We performed
doxycycline titration in the absence of morpholino and
morpholino titration for fixed saturated doxycycline concen-
tration (10 μg/mL) (Figure 2a and b). The doxycycline
concentration ranged from 1 ng/mL to 10 μg/mL, while
morpholino concentration ranged from 0 to 5 nmol/mL. All
fluorescence microscopy and flow cytometry measurements
were performed between 48 to 56 h after addition of chemical
ligands, when the concentration of fluorescent proteins is at
quasi-steady state. During the analysis of fluorescence using
flow cytometry we discovered that, although stringent selection
of cells positive for the circuit integration was possible, a
portion of these cells exhibited leaky transgene expression
(Supplementary Figure 1). To eliminate this population, we
include in the analysis only the cells responsive to both input
variables by appropriate gating (Supplementary Figures 1 and
2). The titrations result in output fluorescent protein
measurements consistent with the expected behavior of our
network topology. Expression levels of both fluorescent
reporters were up-regulated in response to increasing
doxycycline. The addition of morpholino results in a significant
increase in DsRed intensity but not AmCyan, which indicated
that the morpholino successfully interferes with the shRNA

Figure 2. Characterization experiments. (a) Fluorescence microscopy and gated flow cytometry results of doxycycline titration in the absence of
morpholino. (b) Fluorescence microscopy and gated flow cytometry results of morpholino titration for fixed saturated doxycycline concentration.
Doxycycline concentration ranged from 1 ng/mL to 10 μg/mL, while morpholino concentration ranged from 0 to 5 nmol/mL. Images surrounded
by red box shows identical condition: 10 μg/mL doxycycline and 0 nmol/mL morpholino. (c) Schematic representation of modular response
analysis. Semiquantitative sensitivity analysis is performed by applying systematic perturbations to each modular component. The resulting change in
activity of each module is determined as global response coefficient.
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function and that the shRNA is indeed responsible for DsRed
down-regulation.
Reverse Engineering Approach. After completing the

dose−response profile of the circuit, we attempted to
reconstruct the network topology without using our prior
knowledge of the circuit. We used a top-down reverse
engineering approach to extract interactions from steady-state
perturbation experiments. The method is based on modular
response analysis13 and assumes that the biological network is a
collection of monotone modules represented by simultaneous
output measurements xi, such as steady-state concentrations of
protein or mRNA levels. These quantities are thought of as
state variables in a dynamical system, which is the set of
differential equations, dxi/dt = f(xi,pi) where pi is a set of input
parameters. One introduces coefficients rij obtained from partial
derivatives of f as a measure of pairwise interaction strengths
between nodes. The main objective of modular response
analysis is to obtain the signs of the pairwise interactions, which
represent the nature of the influence exerted by one node onto
another. In cases where no interaction exists, rij should be
identified as zero. For our benchmark architecture and in order
to obtain the interactions between nodes, we have to obtain
only the global response coefficients (GRC), obtained
experimentally by calculating Δln(xi), where xi represents the
steady-state concentration of a state variable, such as protein or
mRNA. Once the functional modules (i.e., perturbation targets)
of the target network have been selected, the experimental
procedure consists of the following steps (Figure 2c): (a)
measure the steady-state xi corresponding to the unperturbed

set of inputs pi, (b) perform a perturbation to each pi
individually and measure the new steady state, (c) calculate
the global response coefficients using the steady-state data. We
use the synthetic circuit as a benchmark to validate the
reconstruction results, and we probe specific perturbation and
measurement parameters. First, we examine the impact of the
experimental perturbation range on the quality of network
reconstruction. Second, we probe the consistency of the
topology reconstruction between protein (flow cytometry) or
mRNA (qRT-PCR) measurements.

Network Reconstruction Using Flow Cytometry Data.
For the first question, we defined a set of perturbation ranges to
test the general reconstruction performance. By taking
advantage of the dose-dependent dynamics of the circuit, we
treated each stepwise decrease in concentration of doxycycline
and morpholino during the titration experiment as a
perturbation and obtained the response coefficients for these
intervals by calculating the log fractional change in each
fluorescence reading (Figure 3). We observed that as
doxycycline concentration increases (Figure 3a) the mean
fluorescence of AmCyan and DsRed increase. Moreover,
morpholino up-regulates DsRed expression. As a single set of
complete topology reconstruction consists of the system’s
response to each input, we took a pair of single-step intervals
(annotated in roman numerals) from each titration data to
denote the perturbations and proceeded with the network
reconstruction based on the chosen intervals. In total, we
defined six intervals to represent equal numbers of separate
perturbation scenarios. The three intervals I−III represent 10-

Figure 3. Reverse engineering using flow cytometry protein measurements. (a) Cells harboring the synthetic circuit construct were perturbed with
various concentrations of doxycycline and morpholino. After 48 h of induction, cells were harvested, and their expression of AmCyan and DsRed was
measured via fluorescence using flow cytometry (n ≥ 100,000). After gating of flow cytometry results to include only the cells responsive to chemical
perturbations (n′ ≥ 10,000), the mean of AmCyan and DsRed fluorescence is plotted as a function of doxycycline and morpholino concentration.
The doxycycline titration was performed while keeping morpholino at 0 nmol/mL, and morpholino titration was performed with doxycycline
concentration of 10 μg/mL. To simulate different perturbation conditions, each stepwise change in chemical concentration is defined as intervals I−
VI. (b) Global response coefficient of a given interval. Bootstrap resampling method is used to obtain the confidence interval of the response
coefficients. For the resampling method, 120 random cells are drawn from pre- and post-perturbation, and their average is used to calculate the
response coefficient. Such calculation is performed 1,000 times, and the result is shown as a boxplot showing 95% confidence interval (whiskers).
Red + indicates outliers. Networks on the right show complete network reconstruction results. Values denote the median response coefficient
confidence interval. Dotted lines represent cases where the 95% confidence interval of the corresponding obtained from simulation includes zero,
whereas solid lines indicate cases where it does not.
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fold increase in doxycycline concentration (starting from 100

ng/mL to 103 ng/mL) and were used to calculate response
coefficients relating Dox-rtTA activity to each of the fluorescent
output nodes (rDC and rDR). Intervals IV−VI represent increase
in morpholino concentration (starting from 0 nmol/mL to 1, 3,
5 nmol/mL) and were used to calculate the response
coefficients relating the activity of shRNA-FF3-morpholino to
the fluorescence output nodes (rMC and rMR). For each set of
reconstruction result, intervals were paired based on their
relative pre-perturbation concentration for each drug (i.e., I and
VI, II and V, III and VI). As a control, we perturbed the
fluorescent proteins using siRNA to verify that there is no
crosstalk between them (Supplementary Figure 2).
In order to estimate the significance of the reconstruction

results, we calculated the confidence interval of the global
response coefficients and plotted the results using a boxplot
showing 2.5 and 97.5 percentiles. More specifically, if the 95%
confidence interval does not intersect 0, then the response
coefficient is statistically significant, indicating a connection
between two nodes. In other words, we accept calculated
coefficients as positive only if P(rij > 0) > 0.975 and negative if
P(rij < 0) > 0.975.
To generate the confidence interval for the inferred response

coefficient using the flow cytometry measurements, we selected
the method of bootstrap resampling (Methods, Bootstrap).23

Briefly, each round of bootstrap estimation consists of (1)
randomly drawing a number N of resamples (with replace-
ment) from flow cytometry data of pre- and post-perturbation
states, (2) calculating the mean of fluorescent readings, and (3)
performing response coefficient calculation by calculating
fractional change Δln(x) for each protein.

The bootstrap resampling size is a critical parameter as it has
an inverse-squared relationship with the size of the confidence
interval, which in turn directly affects our conclusions regarding
the reconstructed network topology. We selected a resampling
size such that the variations in the calculated global response
coefficients reflect typical experimental errors and used our
knowledge of the benchmark circuit to validate the selection. In
particular, for proteins AmCyan and DsRed, we observed the
standard errors of 6.5% and 4.4%, respectively (Supplementary
Table 1). If we select 4.4% as the standard error, we obtain a
resampling rate of 120 (Methods, Resampling Rate Selection).
When we apply this rate to analyze the results of perturbations
outside of protein saturation, the response coefficient
representing an edge that is absent (rMC) includes zero in its
confidence interval (and thus considered statistically negli-
gible), while all other response coefficient (rDC, rDR, rMR) do not
include zero in their 95% confidence interval (Supplementary
Figure 3). Even when we widen the 95% confidence interval by
accepting 6.5% standard error and repeating the procedure (N
= 60), the same topology is retained and identical conclusions
can be made.
We proceed to the network reconstruction for the various

perturbation scenarios using the resample rate N = 120. The
confidence interval of the response coefficient was constructed
with 1,000 repetitions of bootstrap estimates. For the interval
pair III and VI, which represent perturbations applied at or near
saturation of both fluorescent proteins, the 95% confidence
interval for every response coefficient includes zero, yielding a
circuit topology that suggests negligible functional relationship
between regulator nodes and output nodes (Figure 3b, top).
When we perform the same calculation for the other intervals,
we observe that the response coefficients increase in magnitude.

Figure 4. Reverse engineering using qRT-PCR mRNA measurements. (a) Cells stably integrated with the synthetic circuit were perturbed with
various concentrations of doxycycline and morpholino. Total mRNA was extracted 48 h post-induction, and relative abundance of fluorescent output
mRNA was measured using qRT-PCR with ΔΔCt method. The data shown consist of three separate experiments with each with triplicate PCR
results, and error bars indicate standard error of the mean. Each stepwise decrease in perturbation agent is labeled as a single interval (denoted by
roman numerals) to simulate perturbation conditions for acquisition of response coefficients. (b) Global response coefficients of each simulated
perturbation interval. To quantify the accuracy of the result, Monte Carlo simulation was used to build a confidence interval of the response
coefficients. The results are displayed as boxplots showing 95% confidence intervals (whiskers). Networks on the right shows complete network
reconstruction results. Values denote the median response coefficient confidence interval. Dotted lines represent cases where the 95% confidence
interval of the corresponding obtained from simulation includes zero, whereas solid lines indicate cases where it does not. (c) Cells grown in pre- and
post-perturbation intervals I and IV were sorted for high fluorescence using FACS prior to extracting mRNA. Harvested mRNA of the selected
population was then used for qRT-PCR (top) and subsequent network reconstruction (bottom) as in panel b.
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Only in a case where no functional relationship exists between
two nodes (rMC), the response coefficient shows negligible
variation in magnitude across all three intervals (rM̅C = 0.060 ±
0.034). Furthermore, we observe a noticeable difference
between the response coefficients rDC and rDR despite the fact
that rtTA co-regulates AmCyan and DsRed expression via a
bidirectional promoter. The comparison of median response
coefficients for rDR and rDC indicates that rDR is consistently
larger, particularly for higher doxycycline concentration (rDR/
rDC = 3.00, 1.81, 1.16 for intervals I, II and III, respectively).
Such differences can potentially be used for identifying
secondary connections to coregulated genes, in the particular
case the constant but incomplete suppression of DsRed
transcript by the shRNA.
We also look for similar defining features following a network

reconstruction process with N = 60 as a resampling rate
(Supplementary Figure 4). The changes in confidence interval
due to the smaller resampling rate do not affect our
reconstruction conclusions. We also discover that selecting
this confidence interval has negligible effect on the observed
median values. Lastly, it is worth mentioning that the
reconstruction results for the three different interval pairs
(Figure 3b) point to the possibility of using a “consensus-based
reconstruction”. Under this strategy the consensus graph would
consist of the significant connections that appear most of the
times. This strategy yields a perfect reconstruction for our
benchmark architecture (Supplementary Figure 5).
Network Reconstruction Using mRNA Measurements.

We proceeded with mRNA measurements using qRT-PCR and
performed the network reconstruction in a similar fashion. We
performed titration of doxycycline and morpholino on cells
harboring the benchmark circuit, but this time harvested the
total mRNA of each population 48 h after induction instead of
directly measuring the fluorescence (Figure 4a). The
perturbation intervals are also defined in the same fashion,
with each Roman numeral signifying logarithmic increase in
doxycycline and linear increase in morpholino from different
starting points. We performed qRT-PCR to measure mRNA
levels of each fluorescent protein and compared their relative
values by using ΔΔCt method with expression of GAPDH as
the normalization factor for each gene. In this case we assume a
Gaussian distribution for the biological triplicates of threshold
cycle readings and employed Monte Carlo simulations to
generate the confidence interval associated with each response
coefficient. In these simulations, we draw random instances of
ΔΔCt values from a simulated normal distribution with mean
and standard deviation identical to that of corresponding values
obtained from three biological replicates. The simulated value is
then used to calculate the global response coefficient in the
same fashion as we did using flow cytometry data, by
calculating the fractional change Δln(xi) where xi is the
normalized copy number of mRNA. After performing 1,000
replicates of the simulation, we once again plotted the
distribution on a boxplot showing 2.5 and 97.5 percentile of
the data; the reconstruction results with median response
coefficient are displayed in Figure 4b.
The plot of relative mRNA copy number versus doxycycline

and morpholino concentration shows a trend consistent with
that of the dose-dependent response of protein expression;
both AmCyan and DsRed are up-regulated in response to
doxycycline, while only DsRed is sensitive to changing
morpholino concentration. As a consequence, we observe
that overall reconstruction results of two different types of data

share a common trend of increased sensitivity as pre-
perturbation concentration decreases, albeit with increased
uncertainty due to standard deviation associated with ΔΔCt
calculation. Of the 6 non-zero edges (rDC and rDR from I and II
and rMR from IV and V) that were identified as accurate based
on confidence interval derived from flow cytometry data
(Figure 3b), only 2 of the corresponding edges (rDR and rMR
from intervals I and IV, respectively) derived from qPCR data
fit this criteria (Figure 4b). It is worth noting that, of the 4 that
remain inconclusive, rDC from interval I and rDR from interval II
was closest to being conclusive, with P(rij > 0) = 0.958 and
0.969, respectively (0.975 is the minimum requirement).
In order to examine further the noise associated with mRNA

measurements, we performed a triplicate measurement of a
benchmark cellular component via qRT-PCR. We chose the
housekeeping gene GAPDH (also used for our qRT-PCR data
normalization). After calculating the standard error of its
expression among three separate experiments, we obtained the
standard error to be 4.5%, a rate comparable to that of flow
cytometry experiments but smaller than that of the AmCyan
and DsRed mRNA measurements. Therefore, we anticipate
that it is possible (e.g., primer selection and experimental
repeats) to reduce the error in qRT-PCR measurements and
potentially improve the decisiveness of the reconstruction
results.
A difference between the protein and mRNA experiments is

that the reverse engineering is applied to a gated population for
the former, whereas we use RNA harvested from all cells for the
latter. Therefore, we hypothesize that we can improve the qRT-
PCR-based RE results by appropriately sorting a population of
cells. Accordingly, we chose a pre- and post-perturbation
interval most likely to result in decisive reconstruction results
(intervals I and IV of Figure 3) and sorted the cells prior to the
mRNA harvesting. We used the same criteria as we did in
gating flow cytometry measurement (Supplementary Figure 6).
We then proceeded with qRT-PCR and subsequent network
reconstruction. The newly recovered topology confirmed our
hypothesis, successfully predicting the signs of all of the
expected interactions with 95% confidence (Figure 4c). This
was also reflected in our calculation of relative mRNA copy
number analysis using ΔΔCt calculation.

Conclusion. One of the main challenges in validating a
biological network inference algorithm lies in defining suitable
“ground truth” experiments. Traditionally, this task involved
verification against known data24−26 or using in silico
simulations,27−29 which restricts possible tests and makes
comparison across methods nontrivial. In this study, we show
that genetic circuits integrated in human cells can serve as a
benchmark for reverse engineering validation. After stably
integrating a synthetic circuit with three different connections
in human cells, we used a simple reverse engineering approach
and were able to assess its performance in two different fronts:
evaluation of reconstructed network based on defining features
of the network, and comparison of reconstruction results using
different species to represent the synthetic network activity. We
chose to utilize protein and mRNA as the two representative
species and took steps to determine the appropriate statistical
procedure for each measurement in order to increase the
prediction confidence. Although both flow cytometry and
qPCR data reflect defining features of the network, we had to
tailor our analysis for each data type in order to obtain a
coherent reconstruction result with reasonable confidence.
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A critical issue with our reconstruction results was the
inability to pick up statistically significant connections due to
noise. While stochasticity is an inherent part of synthetic
biological systems, other issues associated with transgenes, such
as leakiness of expression and unwanted epigenetic silencing,
are obstacles that limit their functions and utility for reverse
engineering validation. In fact, the difficulties in using
transgenic expression data for reverse engineering purpose
has been highlighted by the second DREAM challenge, where a
majority of the state-of-the-art reverse engineering algorithms
failed to reliably reconstruct a yeast synthetic gene net-
work.30−32 Perhaps, the most promising aspect of this study is
its contribution toward unraveling previously unknown
endogenous signaling and disease-related networks. Unraveling
biological networks is central to understanding biology in
general and human biology in particular. Many human diseases
are essentially network-level phenomena. While engineering a
large representative set of small to medium scale synthetic
circuits in mammalian cells is a daunting task,33,34 we argue that
a few well-characterized circuits can be instrumental toward
improving the theory and algorithms. We hope that eventually
the validated RE methods will lead to the improvement in
understanding and treating human diseases.

■ METHODS

Bootstrap. For a standard calculation of experimental error,
several empirical measurements are averaged. If the probability
density of the individual measurements has finite moments,
then the true average is a t-distributed random variable with
mean equal to the sample mean and standard deviation equal to
the sample standard deviation divided by the square root of the
number of samples (called the standard error). The 95%
confidence interval means that the probability is less than 5%
that the true value of the average lies more than 1.96 standard
deviations from the sample mean. Bootstrapping is used to
estimate the confidence interval for experiments where the t-
distribution does not apply or cannot be assumed. For a simple
example of bootstrapping, suppose that one is interested in
estimating the median of a set of experimental replicates. Then
a number of these replicates are drawn at random with
replacement (i.e., replacing each number after each draw), the
median is calculated, and this is repeated several times to obtain
a distribution of medians. Then the 95% confidence interval of
the true median is the range from the 2.5 to the 97.5 percentile
of the set of medians. In the main text we use bootstrapping to
estimate the experimental error for the global response
coefficients.
Stable Transfection and Cell Line. The synthetic gene

circuit construct was stably integrated into a HEK293 cell line
using Flp-In 293 System (Invitrogen) according to the
manufacturer’s instructions. The cells were maintained at 37
°C, 100% humidity, and 5% CO2. The complete growth
medium consists of Dulbecco’s modified Eagle’s medium
(Invitrogen) supplemented with 10% Fetal Bovine Serum
(Invitrogen), 0.1 mM MEM nonessential amino acids
(Invitrogen), 0.045 units/mL of penicillin and 0.045 units/
mL of streptomycin (Invitrogen). Hygromycin B (Invitrogen)
at 50 μg/mL was added as a selection agent. When the culture
reached 75−90% confluency, it was passed first by washing with
PBS (Mediatech) and then trypsinized with 0.25% Trypsin-
EDTA (Invitrogen). New culture was plated at 40% seeding
density.

Fluorescence Microscopy. Fluorescence images of live
cells were captured 48−56 h post-perturbation with doxycy-
cline and morpholino. The live cells were grown on 12-well
plates (Greiner Bio-One) in the complete medium. Cells were
imaged using the Olympus IX81 microscope and a Precision
Control environmental chamber. The images were captured
using a Hamamatsu ORCA-03 Cooled monochrome digital
camera. The filter sets (Chroma) are as follows: ET436/20x
(excitation) and ET480/40m (emission) for AmCyan, ET560/
40x (excitation) and ET630/75m (emission) for DsRed. Data
collection and processing was performed in software package
Slidebook 5.0. All images within a given experimental set were
collected with the same exposure times and underwent identical
processing.

Flow Cytometry. For FACS experiment, cells were
prepared as follows: 48 h after perturbation, cells were
trypsinized with 0.3 mL of 0.25% trypsin-EDTA for 3 min
and pelleted by centrifugation at 4000 rpm for 2 min. The
pellet was resuspended with 0.4 mL of PBS (Mediatech).
Analysis was performed with BD LSRFortessa. AmCyan
protein was detected with a 445 nm laser and a 515/20
band-pass filter, and DsRed with a 561-nm laser, 610 emission
filter, and 610/20 band-pass filter. For each culture representing
different conditions, 100,000 events were collected. Subsequent
gating and analysis of the flow cytometry data was performed in
FlowJo (Treestar). For sorting, sample preparation was
performed the same, but the analysis and sorting were
performed with a BD FACSAria cell sorter. For each condition,
200,000 cells that fell within the defined gate were collected as
sorted population.

Quantitative RT-PCR. Forty-eight hours after perturbation,
total RNA of the population was harvested using the RNeasy
Mini kit (Qiagen) according to manufacturer’s suggestion. One
microgram of total RNA was reverse transcribed to cDNA
using QuantiTect Reverse Transcription kit (Qiagen).
Quantitative PCR assays were performed with the Mastercycle
ep realplex thermal cycler (Eppendorf) using the KAPA SYBR
FAST qPCR kit (KAPA Biosystems). The relative mRNA
expression levels of each node in the synthetic gene circuit were
quantified with ΔΔCt method, using GAPDH as normalization
factor. Forward primer used to amplify GAPDH sequence was
5′-AATCCCATCACCATCTTCCA-3′, and the reverse primer
was 5′-TGGACTCCACGACGTACTCA-3′. Amplification
started with an enzyme activation step at 95 °C for 3 min,
followed by 45 cycles consisting of 3 s of denaturation step at
95 °C and 20 s of annealing/extension at 60 °C.

Resampling Rate Selection. For proteins AmCyan and
DsRed, we calculated the standard errors of 6.5% and 4.4%,
respectively (Supplementary Table 1). The 95% confidence
interval of the mean is defined as x ̅ ± (SE × 1.96), and by
substituting SE with the observed value we can determine the
limits of 95% confidence interval. For example, the observed
standard error of 4.4% translates to x ̅ ± 8.8%. In other words,
the “radius” of the 95% confidence interval (distance from
mean to upper and lower boundary) in this case should be
approximately 0.09 for the calculated global response
coefficients. Supplementary Figure 3, the calculated global
response coefficients vs resampling rate (N), illustrates that
increasing the resampling rate decreases the 95% confidence
interval at a rate of 1/√N. Therefore, N = 120 gives us a
confidence interval radius of 0.09 (1/√120 = 0.0912).
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